Synthesis of novel salicylaldimine Schiff bases with a pendant benzo-10-aza-15-crown

Jianzhang Li^a*, Jie Yan^a, Xingyao Wei^b, Bo Zhou^b and Sheng-ying Qin^b*

^aDepartment of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P. R. China ^bDepartment of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China

Novel salicylaldimine mono-Schiff bases with aza-crown pendant have been synthesised via condensation of 3-[(benzo-10-aza-15-crown-5)methyl] salicylaldehyde with substituted aniline and characterised by ¹H NMR, IR, mass spectroscopy and elemental analysis. The crystal structure of *N*-(4-hydroxy-3- formylbenzyl)benzo-10-aza-15-crown-5 aldimine with 4-aminophenol (HL¹⁰) has been determined from X-ray diffraction data.

Keywords: synthesis, condensation, benzo-10-aza-15-crown-5, salicylaldimine mono-Schiff base

Salicylaldimine Schiff bases, an important class of metal chelators, were widely applied in the field of coordination chemistry,¹ analytical chemistry² and catalytic chemistry.³ In recent years, there has been considerable interest in the research of salicylaldimine Schiff bases transition-metal complexes as oxygen carriers⁴ and enzyme catalysis mimetics.^{5,6} It was known that introduction of substituents to the Schiff base ligands would favour the complexes to form stable dioxygen adducts and avoid dimerising and losing activity.⁷ Especially, crown ethers employed as the substituents have received much attention^{8,9} because of their binding ability to alkali ions and special configuration due to the hydrophobicity of the outer ethylene groups and orderly arrangement of the inner oxygen atoms.^{10,11} Crown ether ring with special configuration will endow crowned functional molecular with novel performance

and character. For example, our recent works have shown that dioxygen affinities and biomimetic catalytic performance of crown ether substituted salicylaldimine Schiff bases transitionmetal complexes are better in comparison with crown-free analogues.^{12,13} Aza crown ether bearing salicylaldimine Schiff base ligands are good receptors for alkali and transition-metal guest cations.¹⁴ Herein, as part of a further research program aimed at studying the effects of the bonded aza-crown ether ring possessing special stereo configuration and function on several important properties, namely, the ability for complexation with metal ions and biomimetic catalytic performance, we have designed and synthesised novel aza-crowned salicylaldimine mono-Schiff bases HL¹–HL¹⁰ (see Scheme 1). Their route for the synthesis and the structure are shown in Scheme 1.

^{*} Correspondent. E-mail: lyl63@sina.com

Experimental

General methods and materials

Melting points were determined on a Yanaco MP-500 micro-melting point apparatus and are uncorrected. IR spectra were recorded on a Nicolet-1705X spectrometer. ¹H NMR spectra were recorded on a Bruker AC-200 MHz spectrometer using Me₄Si as internal standard. Mass spectra were obtained on a Finnigan LCQ^{-DECA} spectrometer. The halogen analysis was measured using mercury titration method.^{15,16} Other elementary analyses were performed on a Carlo Erba 1106 elemental analyser. X-ray diffraction were measured on a Enraf-Nornius CAD-4 diffractometer using graphite monochromated Mo K α radiation $\lambda = 0.071073$ nm.

5-Chlorosalicylaldehyde was obtained from Aldrich Co. The following compounds were prepared according to the literature: 5-chloromethylsalicylaldehyde,¹⁷ 5-bromosalicylaldehyde;¹⁸ benzo-10-aza-15-crown-5(BN15C5).¹⁹ Other reagents were of analytical grade and were used without further purification. Silica gel (60H for TLC, Qingdao, China) was used for flash column chromatography.

Synthesis of (benzo-10-aza-15-crown-5) salicylaldehydes

N-(2-hydroxy-3-formyl-5-chlorobenzyl)benzo-10-aza-15-crown-5 (a): A solution of benzo-10-aza-15-crown-5(5.32 g, 0.02 mol), paraformaldehyde (2.0 g) in MeOH(25 cm³) and toluene (80 cm³) was stirred under N₂ atmosphere and 25°C for 12 h. After the solvent was removed by evaporation, 5-chlorosalicylaldehyde (3.03 g, 0.02 mol) and benzene (80 cm³) were added. The mixture was boiled under N₂ atmosphere and reflux for 12 h, cooled and then filtered. The solvent was removed by evaporation and the residual mass was chromatographed on a silica gel column using CH₂Cl₂ as an eluent to give the pure product as white solid, 7.40 g, 85% yield, m.p.139–140°C. ¹H NMR(CDCl₃) δ : 10.41 (s, 1H, OH, D₂O exchangeable), 9.89 (s, 1H, CHO), 7.57–6.89 (m, 6H, ArH), 4.16–3.79 (m, 14H, OCH₂, NCH₂Ar), 2.84 (t, *J* = 5.3 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3455, 2944, 2851,1658, 1601, 1500, 1256, 1128, 1051; ESI-MS *m/z*: 437 (M⁺); Anal. calcd. for C₂₂H₂₆ClNO₆: C 60.62, H 5.97, N 3.21, Cl 8.15; found C 60.45, H 6.15, N 3.41, Cl 7.98%.

N-(2-hydroxy-3-formyl-5-bromobenzyl)benzo-10-aza-15-crown-5 (b): b was prepared as described for *a* to give white crystal, yield 82%, m.p.166–168°C. ¹H NMR (CDCl₃) δ : 10.44(s, 1H, OH, D₂O exchangeable), 9.86 (s, 1H, CHO), 7.71–6.88 (m, 6H, ArH), 4.16–3.75 (m, 14H, OCH₂, NCH₂Ar), 2.84 (t, *J* = 5.2 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max}: 3448, 2949, 2856,1656,1600,1501, 1255, 1130, 1050; ESI-MS m/z: 480 (M⁺ + 1); Anal. calcd. for C₂₂H₂₆BrNO₆: C 55.00, H 5.42, N 2.92, Br 16.67; found C 55.15, H 5.25, N 2.73, Br 16.78%.

N-(3-formyl-4-hydroxybenzyl)benzo-10-aza-15-crown-5(c): To a stirred mixture of benzo-10-aza-15-crown-5 (5.32 g, 0.02 mol) and K₂CO₃ (3.04 g, 0.022 mol) in acetonitrile (80 cm³), a solution of 5-chloromethylsalicylaldehyde (3.42 g, 0.02 mol) in acetonitrile (20 cm³) was added dropwise within 1 h. the mixture was refluxed for 10 h. Then the reaction mixture was filtered and the solvent was evaporated. The residual mass was chromatographed on a silica gel column using ethyl acetate as an eluent to give the pure product as white solid, 7.90 g, 89% yield, m.p. 80–82°C. ¹H NMR(CDCl₃) δ : 10.78 (s, 1H, OH, D₂O exchangeable), 9.95 (s, 1H, CHO), 7.42–6.81 (m, 7H, ArH), 4.15–3.76 (m, 14H, OCH₂, NCH₂Ar), 2.85 (t, *J* = 5.5 Hz, 4H, CH₂N); IR (KBr, cm⁻¹) v_{max} : 3247, 1652, 1257, 1225, 1128; ESI-MS *m/z*: 401 (M⁺); Anal. calcd for C₂₂H₂₇NO₆: C 65.84, H 6.73, N 3.49; found C 65.59, H 6.57, N 3.61%.

Synthesis of mono-Schiff base ligands HL¹-HL¹⁰

*Ligand HL*¹: A solution of compound *a* (1.74 g, 4 mmol) and *p*-toluidine (0.43 g, 4 mmol) in EtOH(20 cm³) was stirred for 4 h under N₂ atmosphere at 80°C, and then the mixture was cooled. The yellow precipitate was filtered and washed with EtOH. After recrystallisation from EtOH, yellow crystal (1.72 g, yield 82%) was obtained. M.p. 88–90°C. ¹H NMR (CDCl₃) & 9.95 (s, 1H, OH, D₂O exchangeable), 8.22 (s, 1H, N=CH), 7.57–6.42 (m, 10H, ArH), 4.21–3.71 (m, 14H, OCH₂, NCH₂Ar), 2.84 (t, *J* = 5.3 Hz, 4H, NCH₂), 2.27 (s, 3H, CH₃); IR (KBr, cm⁻¹) v_{max} : 3428, 2968, 2862, 1624, 1596, 1503, 1257, 1130, 1050; ESI-MS *m/z*: 526 (M⁺); Anal. calcd. for C₂₉H₃₃ClN₂O₅: C 66.35, H 6.29, N 5.34, Cl 6.77. found C 66.17, H 6.45, N 5.18, Cl 6.89%.

*Ligand HL*²: *HL*² was prepared as described for *HL*¹ except staring with 4-chloroaniline instead of *p*-toluidine to give yellow solid, yield 72%, m.p.95–97°C. ¹H NMR (CDCl₃) δ : 9.98 (s, 1H, OH, D₂O exchangeable), 8.19 (s, 1H, N=CH), 7.54–6.42 (m, 10H, ArH), 4.19–3.67 (m, 14H, OCH₂, NCH₂Ar), 2.82 (t, *J* = 5.1 Hz, 4H, NCH₂); IR (KBr, film) v_{max} : 3442, 2933, 2858, 1623, 1600,1500, 1252, 1131, 1050 cm⁻¹; ESI-MS *m/z*: 546 (M⁺); Anal. calcd. for C₂₈H₃₀Cl₂N₂O₅:

C 61.65, H 5.50, N 5.14, Cl 13.03. found C 61.83, H 5.32, N 5.29, Cl 13.28%.

*Ligand HL*³: *HL*³ was prepared as described for *HL*¹ except staring with *p*-nitroaniline instead of *p*-toluidine to give yellow solid, yield 78%, m.p.131–132°C. ¹H NMR (CDCl₃) δ : 9.91 (s, 1H, OH, D₂O exchangeable), 8.22 (s, 1H, N=CH), 7.57–6.48 (m, 10H, ArH), 4.20–3.71 (m, 14H, OCH₂, NCH₂Ar), 2.81 (t, *J* = 5.8 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3441, 2932, 2861,1622, 1601,1500, 1252, 1127, 1052; ESI-MS *m/z*: 557 (M⁺); Anal. calcd. for C₂₈H₃₀ClN₃O₇: C 60.49, H 5.40, N 7.56, Cl 6.39. found C 60.65, H 5.26, N 7.39, Cl 6.52%.

Ligand HL^4 : HL^4 was prepared as described for HL^1 except staring with *b* instead of *a* to give yellow solid, yield 82%, m.p.92–93°C. ¹H NMR (CDCl₃) δ : 9.98 (s, 1H, OH, D₂O exchangeable), 8.26 (s, 1H, N=CH), 7.59–6.46 (m, 10H, ArH), 4.25–3.76 (m, 14H, OCH₂, NCH₂Ar), 2.81 (t, *J* = 5.6 Hz, 4H, NCH₂), 2.31(s, 3H, CH₃); IR (KBr, cm⁻¹) v_{max} : 3435, 2966, 2856,1626,1600,1502,1255,1131,1049; ESI-MS *m/z*: 570 (M⁺); Anal. calcd. for C₂₉H₃₃BrN₂O₅: C 61.16, H 5.80, N 4.92, Br 14.06. found C 61.03, H 5.65, N 4.78, Br 14.19%.

*Ligand HL*⁵: *HL*⁵ was prepared as described for *HL*² except staring with *b* instead of *a* to give yellow solid, yield 76%, m.p.99–101°C. ¹H NMR (CDCl₃) δ : 9.96 (s, 1H, OH, D₂O exchangeable), 8.24 (s, 1H, N=CH), 7.60–6.46 (m, 10H, ArH), 4.19–3.67 (m, 14H, OCH₂, NCH₂Ar), 2.82 (t, *J* = 5.1 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3444, 2932, 2860, 1623, 1600,1500, 1252, 1132, 1052; ESI-MS *m/z*: 590 (M⁺); Anal. calcd. for C₂₈H₃₀BrN₂O₅Cl: C 57.00, H 5.09, N 4.75, Cl 6.02, Br 13.57, found C 57.16, H 5.23, N 5.59, Cl 6.18, Br 13.39%.

Ligand HL⁶: HL⁶ was prepared as described for HL³ except staring with *b* instead of *a* to give yellow solid, yield 72%, m.p.146–147°C. ¹H NMR (CDCl₃) δ : 9.99 (s, 1H, OH, D₂O exchangeable), 8.27 (s, 1H, N=CH), 7.59–6.43 (m, 10H, ArH), 4.17–3.64 (m, 14H, OCH₂, NCH₂Ar), 2.83 (t, *J* = 5.8 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3440, 2930, 2863, 1624, 1601, 1500, 1250, 1129, 1053; ESI-MS *m/z*: 601 (M⁺); Anal. calcd. for C₂₈H₃₀BrN₃O₇: C 56.00, H 5.00, N 7.00, Br 13.33. found C 16.15, H 4.83, N 7.19, Br 13.15%. Ligand HL⁷: HL⁷ was prepared as described for HL¹ except staring

*Ligand HL*⁷: *HL*⁷ was prepared as described for *HL*¹ except staring with *c* instead of *a* to give yellow solid, yield 82%, m.p.97–98°C. ¹H NMR (CDCl₃) &: 13.12 (s, 1H, OH, D₂O exchangeable), 8.34 (s, 1H, N=CH), 7.57–6.42 (m, 11H, ArH), 4.21–3.71 (m, 14H, OCH₂, NCH₂Ar), 2.81 (t, *J* = 5.7 Hz, 4H, NCH₂), 2.22 (s, 3H, CH₃); IR (KBr, cm⁻¹) v_{max} : 3228, 2968, 2862, 1624, 1596, 1503, 1257, 1130, 1050; ESI-MS *m/z*: 491 (M⁺); Anal. calcd. for C₂₉H₃₄N₂O₅: C 71.02, H 6.94, N 5.71. found C 71.15, H 6.75, N 6.91%.

*Ligand HL*⁸: *HL*⁸ was prepared as described for *HL*² except staring with *c* instead of *a* to give yellow solid, yield 72%, m.p.105–107°C. ¹H NMR (CDCl₃) & 13.05 (s, 1H, OH, D₂O exchangeable), 8.41 (s, 1H, N=CH), 7.66–6.49 (m, 11H, ArH), 4.18–3.68 (m, 14H, OCH₂, NCH₂Ar), 2.82 (t, J = 5.4 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3236, 2927, 2861, 1624, 1600,1502, 1256, 1128, 1052; ESI-MS *m/z*: 512 (M⁺); Anal. calcd. for C₂₈H₃₁ClN₂O₅: C 65.82, H 6.07, N 5.48, Cl 6.95. found C 65.96, H 6.26, N 5.29, Cl 6.78%.

*Ligand HL*⁹: *HL*⁹ was prepared as described for *HL*³ except staring with *c* instead of *a* to give yellow solid, yield 72%, m.p.120–122°C. ¹H NMR (CDCl₃) & 13.11 (s, 1H, OH, D₂O exchangeable), 8.43 (s, 1H, N=CH), 7.68–6.81 (m, 11H, ArH), 4.16–3.74 (m, 14H, OCH₂, NCH₂Ar), 2.85 (t, J = 5.2 Hz, 4H, NCH₂); IR (KBr, cm⁻¹) v_{max} : 3232, 2929, 2859, 1623, 1600,1501, 1254, 1129, 1050; ESI-MS *m/z*: 522 (M⁺); Anal. calcd. for C₂₈H₃₁N₃O₇: C 64.49, H 5.95, N 8.06. found C 64.68, H 5.76, N 8.19%.

Ligand HL^{10} : HL^{10} was prepared as described for HL^8 except staring with 4-aminophenol instead of 4-chloroaniline to give yellow solid, yield 85%. m.p. 95–97°C. ¹H NMR (CDCl₃) δ : 13.65 (s, 1H, OH, D₂O exchangeable), 10.29 (s, 1H, OH, D₂O exchangeable), 8.55 (s, 1H, N=CH), 7.41–6.85 (m, 11H, Ar-H), 4.16–3.77 (m, 14H, OCH₂, NCH₂Ar), 2.83 (t, J = 5.7 Hz, 4H, CH₂N), 1.63 (brs, 2H, H₂O). IR (KBr) v_{max} : 3446, 3225, 1622, 1258, 1126 cm⁻¹; ESI-MS m/z: 492 (M⁺); Anal. calcd for C₂₈H₃₄N₂O₇(HL¹⁰·H₂O): C 65.88, H 6.67, N 5.49; found C 65.97, H 6.49, N 5.56%.

Results and discussion

Synthesis

The Schiff base ligands (HL¹–HL¹⁰) were conveniently prepared by the reaction of aromatic amines with crown ether-functionalised salicylaldehyde and characterised by IR, ¹H NMR, mass spectroscopy and elemental analysis. In the IR spectra of Schiff base ligands HL¹–HL⁶, the characteristic frequency of Ar–OH at 3444–3428 cm⁻¹ was observed, as was

Fig. 1 The X-ray structure of HL¹⁰

that for CH=N at 1626–1622 cm⁻¹. However, in the IR spectra of Schiff base ligands HL⁷–HL¹⁰, the characteristic frequency of Ar–OH at 3236–3225 cm⁻¹ was observed, as was that for CH=N at 1624–1622 cm⁻¹. ¹H NMR spectra of Schiff base ligands HL¹–HL¹⁰ show the aromatic protons as multiplet in the range 7.60–6.42 ppm. However, the chemical shifts O–H protons of the phenolic groups are in the range 9.99–9.91 ppm for HL¹–HL⁶, in the range 13.65–13.05 ppm for HL⁷–HL¹⁰, respectively.

Crystal structure

Single crystals of HL¹⁰ were obtained by volatilisation of a CH₃COOC₂H₅ solution of HL¹⁰. The perspective drawing of HL¹⁰ with atomic numbering is depicted in Fig. 1. Single crystal data were collected using a CAD-4 fourcircle automated diffractometer, which utilised graphite monochromated Mo K α radiation with DIFRAC. The structure was solved using the direct method and refined on F^2 using a full matrix least-squares procedure. All non-hydrogen

Table 1 Crystal data and structure refinement of HL¹⁰·H₂O

Empirical formula	(HL ¹⁰) C ₂₈ H ₃₄ N ₂ O ₇
Formula weight Crystal system Space group Unit cell dimensions	510.57 Monoclinic P 21/n a = 12.424(7) Å deg. $\alpha = 90.00(4) \text{ deg.}$ b = 19.945(7) Å deg. $\beta = 116.45(5) \text{ deg.}$ c = 12.556(7) Å deg. $\gamma = 90.00(4) \text{ deg.}$
Volume Z	2783(2) Å ³ 4
Density (calculated) Absorption coefficient <i>F</i> (000)	1.218 Mg/m ³ 0.088 mm ⁻¹ 1088
Crystal size θ range for data collection Index ranges	0.20 × 0.25 × 0.30 mm 1.92 to 22.51 deg. -13<=h<=11,
Reflections collected Independent reflections Refinement method Data/restraints/parameters Goodness-of-fit on F^2 Final B indices $[b2\sigma(h)]$	0 <= k <= 21, 0 <= l <= 13 3785 3629 [R(int) = 0.0000] Full-matrix least-squares on F ² 3629/0/335 0.850 B ₂ = 0.0606 wB ₂ = 0.1446
R indices (all data)	$R_1 = 0.1917, wR_2 = 0.1837$

atoms were refined anisotropically. Positions of all hydrogen atoms for HL¹⁰ were calculated based on geometrical factors. These hydrogens were allowed to ride on their neighboring heavy atoms during refinement, and the rest hydrogen atoms of HL¹⁰ were refined isotropically. The structure was solved, refined and displayed using NRCVAX and SHELXS 97 program package. The data for the crystal structure of *N*-(4hydroxy-3-formylbenzyl)benzo-10-aza-15-crown-5 aldimine with 4-aminophenol (HL¹⁰) are presented in Table 1. The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC No 296082).

The authors gratefully acknowledge financial support from China National Natural Science Foundation (No: 29572059) and Key Project of Sichuan Province Education Office (2005D007).

Received 23 November 2005; accepted 30 January 2006 Paper 05/3569

References

- 1 S. Yamada, Coord. Chem. Rev., 1999, 190, 537.
- 2 Z. Cimernan, N. Galic and B. Bosner, Anal. Chim. Acta., 1997, 343, 145.
- 3 T. Panniyamurthy, B. Bhatia, M.M. Reddy, G.C. Maikap and J. Iqbal, *Tetrahedron*, **1997**, **53**, 7649.
- 4 D. Chen, A.E. Martell and Y. Sun, *Inorg. Chem.*, 1989, **28**, 2647.
- 5 K. Srinivasan, P. Michaud and J.K. Kochi, J. Am. Chem. Soc., 1986, 108, 2309.
- 6 N. Kim and J. Suh, J. Org. Chem., 1994, 59, 1561.
- 7 E.V. Rybak-Akimova, W. Otto, P. Deardorf, R. Roesner and D.H. Busch, Inorg. Chem., 1997, 36, 2746.
- 8 A. Gül, A.I. Okur, A. Cihan, N. Tan and Ö. Bekâroğlu, Synth. React. Inorg. Met-Org. Chem., 1986, 16, 871.
- 9 A.V. Bordunov, J.S. Bradshaw, V.N. Pastushok, X.X. Zhang, X. Kou, N.K. Dalley, Z. Yang, P.B. Savage and R.M. Izatt, *Tetrahedron*, 1997, 53, 17585.
- 10 H. Hochisako, H. Ihara, J. Kamiya and K. Yamnda, Chem. Commun., 1997,19.
- 11 A. Galon, D. Andreu, A.M. Echavarren and P. Prades, J. Am. Chem. Soc., 1992,114, 1511.
- 12 X.X. Lu, H.B. Li, W. Zeng, H. Yang and S.Y. Qin, *Chin. Chem. Lett.*, 2000, **11**, 1053.
- 13 W. Zeng, J.Z. Li, Z.H. Mao, Z. Hong and S.Y. Qin, Adv. Synth. Catal., 2004, 346, 1385.
- 14 X.X. Lu, S.Y. Qin, Z.Z. Zhou and V.W.W. Yam, *Inorg. Chem. Acta.*, 2003, **346**, 49.
- 15 D. Pitre and M. Grandi, Mikrochim. Acta., 1967, 37.
- 16 R.A. Lalaneette, Microchem. J., 1972, 17, 665.
- 17 D. Ginsburg, J. Am. Chem. Soc., 1951, 73, 702.
- 18 K. Auwers and O. Bürger, Chem. Ber., 1904, 37, 3929.
- 19 T.B. Lu and C.T. Wu, Chin. J. Org. Chem., 1985, 4, 312.